The growing use of graph in many fields has sparked a broad interest in developing high-level graph analytics programs. Existing GPU implementations have limited performance with compromising on productivity. HPGraph, our high-performance bulk-synchronous graph analytics framework based on the GPU, provides an abstraction focused on mapping vertex programs to generalized sparse matrix operations on GPU as the backend. HPGraph strikes a balance between performance and productivity by coupling high-performance GPU computing primitives and optimization strategies with a high-level programming model for users to implement various graph algorithms with relatively little effort. We evaluate the performance of HPGraph for four graph primitives (BF...