Abstract The problem of counting derangements was initiated by Pierre Rémond de Montmort in 1708 (see Carlitz in Fibonacci Q. 16(3):255–258, 1978, Clarke and Sved in Math. Mag. 66(5):299–303, 1993, Kim, Kim and Kwon in Adv. Stud. Contemp. Math. (Kyungshang) 28(1):1–11 2018. A derangement is a permutation that has no fixed points, and the derangement number dn $d_{n}$ is the number of fixed-point-free permutations on an n element set. In this paper, we study the derangement polynomials and investigate some interesting properties which are related to derangement numbers. Also, we study two generalizations of derangement polynomials, namely higher-order and r-derangement polynomials, and show some relations between them. In addition, we expres...