Feature extraction is a main step in all perceptual image hashing schemes in which robust features will led to better results in perceptual robustness. Simplicity, discriminative power, computational efficiency and robustness to illumination changes are counted as distinguished properties of Local Binary Pattern features. In this paper, we investigate the use of local binary patterns for perceptual image hashing. In feature extraction, we propose to use both sign and magnitude information of local differences. So, the algorithm utilizes a combination of gradient-based and LBP-based descriptors for feature extraction. To provide security needs, two secret keys are incorporated in feature extraction and hash generation steps. Performance of t...