Simultaneously considering the spatial and temporal processes is essential for land cover simulation models. A cellular automaton (CA) usually simulates the spatial conversion of land cover through post-classification comparisons between the beginning and the end of the training period. However, such an approach does not consider the temporal evolution of land cover. As a result, a CA model fails to explain the realistic land cover change. This paper proposes a temporal-dimension-extension CA (TDE-CA) by integrating the temporal evolution of land cover with a CA. In the TDE-CA, the Breaks for Additive Season and Trend (BFAST) monitor algorithm was employed in the temporal evolution simulation module (TESM) to simulate the gradual evolution ...