Abstract In this article, we construct both the $$[sc]_T[{\bar{s}}{\bar{c}}]_A+[sc]_A[{\bar{s}}{\bar{c}}]_T$$ [sc]T[s¯c¯]A+[sc]A[s¯c¯]T type and $$[sc]_T[{\bar{s}}{\bar{c}}]_V-[sc]_V[{\bar{s}}{\bar{c}}]_T$$ [sc]T[s¯c¯]V-[sc]V[s¯c¯]T type axialvector currents with $$J^{PC}=1^{++}$$ JPC=1++ to study the mass of the X(4140) with the QCD sum rules. The predicted masses support assigning the X(4140) to be the $$[sc]_T[{\bar{s}}{\bar{c}}]_V-[sc]_V[{\bar{s}}{\bar{c}}]_T$$ [sc]T[s¯c¯]V-[sc]V[s¯c¯]T type axialvector tetraquark state. Then we study the hadronic coupling constant $$g_{XJ/\psi \phi }$$ gXJ/ψϕ with the QCD sum rules based on solid quark-hadron duality, and obtain the decay width $$\Gamma (X(4140)\rightarrow J/\psi \phi )=86.9\pm 22.6\,{...