Abstract A number of anti-retroviral drugs are being used for treating Human Immunodeficiency Virus (HIV) infection. Due to emergence of drug resistant strains, there is a constant quest to discover more effective anti-HIV compounds. In this endeavor, computational tools have proven useful in accelerating drug discovery. Although methods were published to design a class of compounds against a specific HIV protein, but an integrated web server for the same is lacking. Therefore, we have developed support vector machine based regression models using experimentally validated data from ChEMBL repository. Quantitative structure activity relationship based features were selected for predicting inhibition activity of a compound against HIV protein...