Abstract Background Boolean models of biological signalling-regulatory networks are increasingly used to formally describe and understand complex biological processes. These models may become inconsistent as new data become available and need to be repaired. In the past, the focus has been shed on the inference of (classes of) models given an interaction network and time-series data sets. However, repair of existing models against new data is still in its infancy, where the process is still manually performed and therefore slow and prone to errors. Results In this work, we propose a method with an associated tool to suggest repairs over inconsistent Boolean models, based on a set of atomic repair operations. Answer Set Programming is used t...