In this work, we developed homotopy perturbation double Sumudu transform method (HPDSTM) which is obtained by combining homotopy perturbation method, double Sumudu transform and He’s polynomials. The method is applied to find the solution of linear fractional one and two dimensional dispersive KdV and nonlinear fractional KdV equations to illustrate the reliability of the method. It is observed that the solutions obtained by the method converge rapidly to the exact solutions. This method is very powerful, and professional techniques for solving different kinds of linear and nonlinear fractional order differential equations
In the present paper, the explicit solutions of some local fractional partial differential equations...
In this study, we present a framework to obtain analytical solutions to nonlinear fractional Schrödi...
Abstract: In this study, we propose a new algorithm to find exact solution of nonlinear time- fracti...
An efficient approach based on homotopy perturbation method by using sumudu transform is proposed to...
We make use of the properties of the Sumudu transform to solve nonlinear fractional partial differen...
In this paper, we propose an efficient modification of the homotopy perturbation method for solvi...
WOS: 000288056400013In this study, we used the homotopy perturbation method (HPM) for solving fracti...
Using the recently proposed homotopy perturbation Shehu transform method (HPSTM), we successfully co...
The idea proposed in this work is to extend the ZZ transform method to resolve the nonlinear fractio...
The homotopy perturbation method (HPM) is applied to solve nonlinear partial differential equations ...
WOS: 000292344300013Purpose - The purpose of this paper is to directly extend the homotopy perturbat...
WOS: 000266090400003In this study, we present a framework to obtain analytical solutions to nonlinea...
In the present paper, the explicit solutions of some local fractional partial differential equations...
This Letter applies the modified He's homotopy perturbation method (HPM) suggested by Momani and Odi...
In applied sciences and engineering, partial differential equations (PDE) of integer and non-integer...
In the present paper, the explicit solutions of some local fractional partial differential equations...
In this study, we present a framework to obtain analytical solutions to nonlinear fractional Schrödi...
Abstract: In this study, we propose a new algorithm to find exact solution of nonlinear time- fracti...
An efficient approach based on homotopy perturbation method by using sumudu transform is proposed to...
We make use of the properties of the Sumudu transform to solve nonlinear fractional partial differen...
In this paper, we propose an efficient modification of the homotopy perturbation method for solvi...
WOS: 000288056400013In this study, we used the homotopy perturbation method (HPM) for solving fracti...
Using the recently proposed homotopy perturbation Shehu transform method (HPSTM), we successfully co...
The idea proposed in this work is to extend the ZZ transform method to resolve the nonlinear fractio...
The homotopy perturbation method (HPM) is applied to solve nonlinear partial differential equations ...
WOS: 000292344300013Purpose - The purpose of this paper is to directly extend the homotopy perturbat...
WOS: 000266090400003In this study, we present a framework to obtain analytical solutions to nonlinea...
In the present paper, the explicit solutions of some local fractional partial differential equations...
This Letter applies the modified He's homotopy perturbation method (HPM) suggested by Momani and Odi...
In applied sciences and engineering, partial differential equations (PDE) of integer and non-integer...
In the present paper, the explicit solutions of some local fractional partial differential equations...
In this study, we present a framework to obtain analytical solutions to nonlinear fractional Schrödi...
Abstract: In this study, we propose a new algorithm to find exact solution of nonlinear time- fracti...