For any graph \(G=(V,E)\), lict graph \(\eta(G)\) of a graph \(G\) is the graph whose vertex set is the union of the set of edges and the set of cut-vertices of \(G\) in which two vertices are adjacent if and only if the corresponding edges are adjacent or the corresponding members of \(G\) are incident. A secure lict dominating set of a graph \(\eta(G)\) , is a dominating set \(F \subseteq V(\eta(G))\) with the property that for each \(v_{1} \in (V(\eta(G))-F)\), there exists \(v_{2} \in F\) adjacent to \(v_{1}\) such that \((F-\lbrace v_{2}\rbrace) \cup \lbrace v_{1} \rbrace\) is a dominating set of \(\eta(G)\). The secure lict dominating number \(\gamma_{se}(\eta(G))\) of \(G\) is a minimum cardinality of a secure lict dominating set of ...