Correlation between independent variables in multiple linear regression model called multicollinearity. One of the assumptions of multiple linear regression free from multicollinearity problem. Principal Component Analysis (PCA) method in this study aims to overcome the existence of multicollinearity in multiple linear regression and know the dominant factor to the research. PCA method has the advantage of clearing the correlation without losing the original variable. Case study a risk factor that affects the incidence of pneumonia infants in East Java 2014. This non reactive research because uses publication data of health profil of East Java. Result of this research multicollinearity problem in research data when detected by VIF/tolerance...