Despite intense efforts, the mechanisms that drive glacial–interglacial changes in atmospheric pCO2 are not fully understood. Here, we aim at quantifying the potential contribution of aeolian dust deposition changes to the atmospheric pCO2 drawdown during the Last Glacial Maximum (LGM). To this end, we use the Max Planck Institute Ocean Model (MPIOM) and the embedded Hamburg Ocean Carbon Cycle model (HAMOCC), including a new parameterization of particle ballasting that accounts for the acceleration of sinking organic soft tissue in the ocean by higher-density biogenic calcite and opal particles, as well as mineral dust. Sensitivity experiments with reconstructed LGM dust deposition rates indicate that the acceleration of detritus by mineral...