Abstract We explore the two holographic complexity proposals for the case of a 2d boundary CFT with a conformal defect. We focus on a Randall-Sundrum type model of a thin AdS2 brane embedded in AdS3. We find that, using the “complexity=volume” proposal, the presence of the defect generates a logarithmic divergence in the complexity of the full boundary state with a coefficient which is related to the central charge and to the boundary entropy. For the “complexity=action” proposal we find that the logarithmically divergent term in the complexity is not influenced by the presence of the defect. This is the first case in which the results of the two holographic proposals differ so dramatically. We consider also the complexity of the reduced de...