The results of a deterministic calibration for the nonhydrostatic convection-permitting LAM-EPS AEMET-γSREPS are shown. LAM-EPS AEMET-γSREPS is a multiboundary condition, multimodel ensemble forecast system developed for Spain. Machine learning tools are used to calibrate the members of the ensemble. Machine learning (hereafter ML) has been considerably successful in many problems, and recent research suggests that meteorology and climatology are not an exception. These machine learning tools range from classical statistical methods to contemporary successful and powerful methods such as kernels and neural networks. The calibration has been done for airports located in many regions of Spain, representing different climatic conditions. The v...