In his seminal work, Taylor (1963 Proc. R. Soc. Lond. A 9, 274–283. (doi:10.1098/rspa.1963.0130).) argued that the geophysically relevant limit for dynamo action within the outer core is one of negligibly small inertia and viscosity in the magnetohydrodynamic equations. Within this limit, he showed the existence of a necessary condition, now well known as Taylor's constraint, which requires that the cylindrically averaged Lorentz torque must everywhere vanish; magnetic fields that satisfy this condition are termed Taylor states. Taylor further showed that the requirement of this constraint being continuously satisfied through time prescribes the evolution of the geostrophic flow, the cylindrically averaged azimuthal flow. We show that Taylo...