Optical coherence tomography angiography (OCTA) is an important tool for investigating vascular networks and microcirculation in living tissue. Traditional OCTA detects blood vessels via intravascular dynamic scattering signals derived from the movements of red blood cells (RBCs). However, the low hematocrit and long latency between RBCs in capillaries make these OCTA signals discontinuous, leading to incomplete mapping of the vascular networks. OCTA imaging of microvascular circulation is particularly challenging in tumors due to the abnormally slow blood flow in angiogenic tumor vessels and strong attenuation of light by tumor tissue. Here, we demonstrate in vivo that gold nanoprisms (GNPRs) can be used as OCT contrast agents working in t...