Targeting RANKL/RANK offers the possibility of developing novel therapeutic approaches to treat bone metabolic diseases. Multiple efforts have been made to inhibit RANKL. For example, marketed monoclonal antibody drug Denosumab could inhibit the maturation of osteoclasts by binding to RANKL. This study is an original approach aimed at discovering small-molecule inhibitors impeding RANKL/RANK protein interaction. We identified compound 34 as a potent and selective RANKL/RANK inhibitor by performing structure-based virtual screening and hit optimization. Disruption of the RANKL/RANK interaction by 34 effectively inhibits RANKL-induced osteoclastogenesis and bone resorption. The expression of osteoclast marker genes was also suppressed by trea...