Dans cette thèse, nous étudions un principe général de convexification permettant de traiter certainsproblèmes variationnels non convexes sur Rd. Grâce à ce principe nous pouvons mettre en oeuvre lespuissantes techniques de dualité et ramener de tels problèmes à des formulations de type primal–dualdans Rd+1, rendant ainsi efficace la recherche numérique de minima globaux. Une théorie de ladualité et des champs de calibration est reformulée dans le cas de fonctionnelles à croissance linéaire.Sous certaines hypothèses, cela nous permet de généraliser un principe d’exclusion découvert parVisintin dans les années 1990 et de réduire le problème initial à la minimisation d’une fonctionnelleconvexe sur Rd. Ce résultat s’applique notamment à une cl...
International audienceThe problem of minimizing a quadratic form over a ball centered at the origin ...
AbstractFor variational problems of the form Infv∈V{f(Av)+g(v)}, we propose a dual method which deco...
AbstractWe derive a dual variational method in order to obtain the existence of a bounded solution t...
In this thesis, we study a general principle of convexification to treat certain non convex variatio...
We present a new duality theory for non-convex variational problems, under possibly mixed Dirichlet ...
Key words and phrases. Banach spaces, convex analysis, duality, calculus of variations, non-convex s...
AbstractWe examine a notion of duality which appears to be useful in situations where the usual conv...
AbstractThis paper treats the construction of dual variational principles for non-convex problems us...
This article studies calculus of variations problems under a convexity constraint. The main motivati...
The problem of finding a solution to a system of variational inequalities, which can be interpreted ...
Parametric and nonparametric necessary and sufficient optimality conditions are established for a cl...
La modélisation sous forme de systèmes non linéaires avec ou sans contrainte apparaît régulièrement ...
AbstractMethods of maximal monotone operators are used in order to study, from a general point of vi...
There are two different approaches to the Dirichlet minimization problem for variational inte-grals ...
AbstractTwo dual problems are proposed for the minimax problem: minimize maxy ϵ Y φ(x, y), subject t...
International audienceThe problem of minimizing a quadratic form over a ball centered at the origin ...
AbstractFor variational problems of the form Infv∈V{f(Av)+g(v)}, we propose a dual method which deco...
AbstractWe derive a dual variational method in order to obtain the existence of a bounded solution t...
In this thesis, we study a general principle of convexification to treat certain non convex variatio...
We present a new duality theory for non-convex variational problems, under possibly mixed Dirichlet ...
Key words and phrases. Banach spaces, convex analysis, duality, calculus of variations, non-convex s...
AbstractWe examine a notion of duality which appears to be useful in situations where the usual conv...
AbstractThis paper treats the construction of dual variational principles for non-convex problems us...
This article studies calculus of variations problems under a convexity constraint. The main motivati...
The problem of finding a solution to a system of variational inequalities, which can be interpreted ...
Parametric and nonparametric necessary and sufficient optimality conditions are established for a cl...
La modélisation sous forme de systèmes non linéaires avec ou sans contrainte apparaît régulièrement ...
AbstractMethods of maximal monotone operators are used in order to study, from a general point of vi...
There are two different approaches to the Dirichlet minimization problem for variational inte-grals ...
AbstractTwo dual problems are proposed for the minimax problem: minimize maxy ϵ Y φ(x, y), subject t...
International audienceThe problem of minimizing a quadratic form over a ball centered at the origin ...
AbstractFor variational problems of the form Infv∈V{f(Av)+g(v)}, we propose a dual method which deco...
AbstractWe derive a dual variational method in order to obtain the existence of a bounded solution t...