Progress has been made in understanding how temporal network features affect the percentage of nodes reached by an information diffusion process. In this work, we explore further: which node pairs are likely to contribute to the actual diffusion of information, i.e., appear in a diffusion trajectory? How is this likelihood related to the local temporal connection features of the node pair? Such deep understanding of the role of node pairs is crucial to tackle challenging optimization problems such as which kind of node pairs or temporal contacts should be stimulated in order to maximize the prevalence of information spreading. We start by using Susceptible-Infected (SI) model, in which an infected (information possessing) node could spread...