We define RN-codings as radix-$\beta$ signed representations of numbers for which rounding to the nearest is always identical to truncation. After giving characterizations of such representations, we investigate some of their properties, and we suggest algorithms for conversion to and from these codings.Nous appelons RN-code une représentation de base β d’un nombre pour la-quelle arrondir au plus près, à une position quelconque, est toujours équivalent à tronquer la représentation. Après avoir donné des caractérisations de ces représentations, nous analysons quelques unes de leurs propriétés, et nous pré-sentons des algorithmes permettant de convertir vers et depuis ces RN-codes
In this contribution nonlinear coding theory is invoked in order to study redundant residue number s...
A number system that is well-designed can affect the computational time and the hardware implementat...
This paper presents circuits for conversion from radix-2 signed-digit residue numbers to binary form...
We define RN-codings as radix-$\beta$ signed representations of numbers for which rounding to the ne...
The RN-codings are particular cases of signed-digit representations, for which rounding to the neare...
A property of the original Booth recoding is that the non-zero digit following --1 is necessarily --...
The RN-codings are particular cases of signed-digit representations, for which rounding to the neare...
(eng) Une propriété du recodage de Booth dans sa forme originale est que le premier chiffre non nul ...
International audienceDuring any composite computation there is a constant need for rounding interme...
Efficient and reliable computer arithmetic is a key requirement to perform fast and reliable numeric...
Une arithmétique sûre et efficace est un élément clé pour exécuter des calculs rapides et sûrs. Le c...
Une arithmétique sûre et efficace est un élément clé pour exécuter des calculs rapides et sûrs. Le c...
AbstractThis paper investigates an arithmetic based upon the representation of computable exact real...
Abs t rac t In this paper, we investigate residue number system (RNS) to deci-lnnl number system con...
This paper investigates an arithmetic based upon the representation of computable exact real numbers...
In this contribution nonlinear coding theory is invoked in order to study redundant residue number s...
A number system that is well-designed can affect the computational time and the hardware implementat...
This paper presents circuits for conversion from radix-2 signed-digit residue numbers to binary form...
We define RN-codings as radix-$\beta$ signed representations of numbers for which rounding to the ne...
The RN-codings are particular cases of signed-digit representations, for which rounding to the neare...
A property of the original Booth recoding is that the non-zero digit following --1 is necessarily --...
The RN-codings are particular cases of signed-digit representations, for which rounding to the neare...
(eng) Une propriété du recodage de Booth dans sa forme originale est que le premier chiffre non nul ...
International audienceDuring any composite computation there is a constant need for rounding interme...
Efficient and reliable computer arithmetic is a key requirement to perform fast and reliable numeric...
Une arithmétique sûre et efficace est un élément clé pour exécuter des calculs rapides et sûrs. Le c...
Une arithmétique sûre et efficace est un élément clé pour exécuter des calculs rapides et sûrs. Le c...
AbstractThis paper investigates an arithmetic based upon the representation of computable exact real...
Abs t rac t In this paper, we investigate residue number system (RNS) to deci-lnnl number system con...
This paper investigates an arithmetic based upon the representation of computable exact real numbers...
In this contribution nonlinear coding theory is invoked in order to study redundant residue number s...
A number system that is well-designed can affect the computational time and the hardware implementat...
This paper presents circuits for conversion from radix-2 signed-digit residue numbers to binary form...