Cette thèse s’articule autour des espaces de modules de représentations de carquois arbitraires, c’est-à-dire possédant d’éventuelles boucles. Nous obtenons trois types de résultats. Le premier concerne la base canonique de Lusztig, dont la définition est étendue à notre cadre, notamment en introduisant une algèbre de Hopf généralisant les groupes quantiques usuels (i.e. associés aux algèbres de Kac-Moody symétriques). On démontre au passage une conjecture faite par Lusztig en 1993, portant sur la catégorie de faisceaux pervers qu’il définit sur les variétés de représentations de carquois.Le second type de résultats, également inspiré par le travail de Lusztig, concerne la base semi- canonique et la variété Lagrangienne nilpotent de Lusztig...