Dans cette thèse, nous étudions les propriétés de concentration des fonctions propres du laplacien discret sur des graphes réguliers de degré fixé dont le nombre de sommets tend vers l'infini. Cette étude s'inspire de la théorie de l'ergodicité quantique sur les variétés. Par analogie avec cette dernière, nous développons un calcul pseudo-différentiel sur les arbres réguliers : nous définissons des classes de symboles et des opérateurs associés, et nous prouvons un certain nombre de propriétés de ces classes de symboles et opérateurs. Nous montrons notamment que les opérateurs sont bornés dans L², et nous donnons des formules de l'adjoint et du produit. Nous nous servons ensuite de cette théorie pour montrer un théorème d'ergodicité quantiq...
Nous étudions le déterminant du laplacien sur les fibrés vectoriels sur les graphes et l'utilisons, ...
In this thesis, we review spectral theory of Laplace-Beltrami operartor on closed manifolds and mani...
This paper studies how close random graphs are typically to their expectations. We interpret this qu...
N this thesis, we study concentration properties of eigenfunctions of the discrete Laplacian on regu...
Consider a sequence of finite regular graphs converging, in the sense of Benjamini-Schramm, to the i...
We prove a quantum-ergodicity theorem on large graphs, for eigenfunctions of Schrödinger operators i...
In this thesis, we give a review of known results concerning the concentration of Laplace eigenfunct...
In this thesis we prove the following results.1. We show that the multiplicity of the second normali...
After a quick presentation of usual notations for the graph theory, we study the set of harmonic fun...
This is the proceedings of the 2nd Japanese-German Symposium on Infinite Dimensional Harmonic Analys...
Une matrice aléatoire n x n est diluée lorsque le nombre d'entrées non nulles est d'ordre n ; les ma...
International audienceThis paper studies the Laplacian spectrum and the average effective resistance...
We study random geometric graphs (RGGs) to address key problems in complex networks. An RGG is const...
We prove that eigenfunctions of the Laplacian on a compact hyperbolic surface delocalise in terms of...
Anybody who has ever read a mathematical text of the author would agree that his way of presenting c...
Nous étudions le déterminant du laplacien sur les fibrés vectoriels sur les graphes et l'utilisons, ...
In this thesis, we review spectral theory of Laplace-Beltrami operartor on closed manifolds and mani...
This paper studies how close random graphs are typically to their expectations. We interpret this qu...
N this thesis, we study concentration properties of eigenfunctions of the discrete Laplacian on regu...
Consider a sequence of finite regular graphs converging, in the sense of Benjamini-Schramm, to the i...
We prove a quantum-ergodicity theorem on large graphs, for eigenfunctions of Schrödinger operators i...
In this thesis, we give a review of known results concerning the concentration of Laplace eigenfunct...
In this thesis we prove the following results.1. We show that the multiplicity of the second normali...
After a quick presentation of usual notations for the graph theory, we study the set of harmonic fun...
This is the proceedings of the 2nd Japanese-German Symposium on Infinite Dimensional Harmonic Analys...
Une matrice aléatoire n x n est diluée lorsque le nombre d'entrées non nulles est d'ordre n ; les ma...
International audienceThis paper studies the Laplacian spectrum and the average effective resistance...
We study random geometric graphs (RGGs) to address key problems in complex networks. An RGG is const...
We prove that eigenfunctions of the Laplacian on a compact hyperbolic surface delocalise in terms of...
Anybody who has ever read a mathematical text of the author would agree that his way of presenting c...
Nous étudions le déterminant du laplacien sur les fibrés vectoriels sur les graphes et l'utilisons, ...
In this thesis, we review spectral theory of Laplace-Beltrami operartor on closed manifolds and mani...
This paper studies how close random graphs are typically to their expectations. We interpret this qu...