[Non fourni]Acute Myeloid Leukemia (AML) is a cancer of white cells characterized by a quick proliferation of immature cells, that invade the circulating blood and become more present than mature blood cells. This thesis is devoted to the study of two mathematical models of AML. In the first model studied, the cell dynamics are represented by PDE’s for the phases G₀, G₁, S, G₂ and M. We also consider a new phase called Ğ₀, between the exit of the M phase and the beginning of the G₁ phase, which models the fast self-renewal effect of cancerous cells. Then, by analyzing the solutions of these PDE’s, the model has been transformed into a form of two coupled nonlinear systems involving distributed delays. An equilibrium analysis is done, the ch...