Dans un réseau bayésien, une observation sur une variable signifie en général que cette variable est instanciée. Ceci signifie que l’observateur peut affirmer avec certitude que la variable est dans l’état signalé. Cette thèse porte sur d’autres types d’observations, souvent appelées observations incertaines, qui ne peuvent pas être représentées par la simple affectation de la variable. Cette thèse clarifie et étudie les différents concepts d’observations incertaines et propose différentes applications des observations incertaines dans les réseaux bayésiens.Nous commençons par dresser un état des lieux sur les observations incertaines dans les réseaux bayésiens dans la littérature et dans les logiciels, en termes de terminologie, de définit...
AbstractWe present an extension of Bayesian networks to probability intervals, aiming at a more real...
Bayesian networks are powerful tools for representing relations of dependence among variables of a d...
Diagnosis applications relying on Artificial Intelligence methods must deal with uncertain knowledge...
This paper proposes a systematized presentation and a terminology for observations in a Bayesian net...
Evidence in a Bayesian network comes from information based on the observation of one or more variab...
A Bayesian network can be used to model consisely the probabilistic knowledge with respect to a give...
Résumé Ce travail de thèse étudie des moyens de formalisation permettant d'assister l'expert forensi...
Includes bibliographical references (page 48).San Diego State University copy: the accompanying CD-R...
Les fautes systèmes peuvent conduire à des conséquences sérieuses pour l’humain, l’environnement et ...
Bayesian Belief Networks are a powerful tool for combining different knowledge sources with various ...
This tutorial provides an overview of Bayesian belief networks. The sub-ject is introduced through a...
AbstractOften experts are incapable of providing “exact” probabilities; likewise, samples on which t...
This master's thesis deals with demonstration of various approaches to probabilistic inference in Ba...
Redes probabilísticas são modelos muito versáteis, com aplicabilidade crescente em diversas áreas. E...
Bayesian networks are tools that were developed by the Artificial Intelligence and Statistic communi...
AbstractWe present an extension of Bayesian networks to probability intervals, aiming at a more real...
Bayesian networks are powerful tools for representing relations of dependence among variables of a d...
Diagnosis applications relying on Artificial Intelligence methods must deal with uncertain knowledge...
This paper proposes a systematized presentation and a terminology for observations in a Bayesian net...
Evidence in a Bayesian network comes from information based on the observation of one or more variab...
A Bayesian network can be used to model consisely the probabilistic knowledge with respect to a give...
Résumé Ce travail de thèse étudie des moyens de formalisation permettant d'assister l'expert forensi...
Includes bibliographical references (page 48).San Diego State University copy: the accompanying CD-R...
Les fautes systèmes peuvent conduire à des conséquences sérieuses pour l’humain, l’environnement et ...
Bayesian Belief Networks are a powerful tool for combining different knowledge sources with various ...
This tutorial provides an overview of Bayesian belief networks. The sub-ject is introduced through a...
AbstractOften experts are incapable of providing “exact” probabilities; likewise, samples on which t...
This master's thesis deals with demonstration of various approaches to probabilistic inference in Ba...
Redes probabilísticas são modelos muito versáteis, com aplicabilidade crescente em diversas áreas. E...
Bayesian networks are tools that were developed by the Artificial Intelligence and Statistic communi...
AbstractWe present an extension of Bayesian networks to probability intervals, aiming at a more real...
Bayesian networks are powerful tools for representing relations of dependence among variables of a d...
Diagnosis applications relying on Artificial Intelligence methods must deal with uncertain knowledge...