Cette thèse présente de nouvelles méthodes d’apprentissage structuré et parcimonieux sur les graphes, ce qui permet de résoudre une large variété de problèmes d’imagerie cérébrale, ainsi que d’autres problèmes en haute dimension avec peu d’échantillon. La première partie de cette thèse propose des relaxation convexe de pénalité discrète et combinatoriale impliquant de la parcimonie et bounded total variation d’un graphe, ainsi que la bounded `2. Ceux-ci sont dévelopé dansle but d’apprendre un modèle linéaire interprétable et on démontre son efficacacité sur des données d’imageries cérébrales ainsi que sur les problèmes de reconstructions parcimonieux.Les sections successives de cette thèse traite de la découverte de structure sur des modèle...
International audienceWe consider structure discovery of undirected graphical models from observatio...
International audienceWe consider structure discovery of undirected graphical models from observatio...
© 2015, The Author(s). We study the problem of statistical estimation with a signal known to be spar...
Cette thèse présente de nouvelles méthodes d’apprentissage structuré et parcimonieux sur les graphes...
The goal of the thesis is to propose methods for learning sparse and structured models from data tha...
International audienceWe consider structure discovery of undirected graphical models from observatio...
International audienceWe study the problem of statistical estimation with a signal known to be spars...
International audienceWe study the problem of statistical estimation with a signal known to be spars...
International audienceWe study the problem of statistical estimation with a signal known to be spars...
International audienceWe consider structure discovery of undirected graphical models from observatio...
Belilovsky E., Kastner K., Varoquaux G., Blaschko M., ''Learning to discover sparse graphical models...
The goal of the thesis is to propose methods for learning sparse and structured models from data tha...
© 2017 International Machine Learning Society (IMLS). All rights reserved. We consider structure dis...
International audienceWe consider structure discovery of undirected graphical models from observatio...
International audienceWe consider structure discovery of undirected graphical models from observatio...
International audienceWe consider structure discovery of undirected graphical models from observatio...
International audienceWe consider structure discovery of undirected graphical models from observatio...
© 2015, The Author(s). We study the problem of statistical estimation with a signal known to be spar...
Cette thèse présente de nouvelles méthodes d’apprentissage structuré et parcimonieux sur les graphes...
The goal of the thesis is to propose methods for learning sparse and structured models from data tha...
International audienceWe consider structure discovery of undirected graphical models from observatio...
International audienceWe study the problem of statistical estimation with a signal known to be spars...
International audienceWe study the problem of statistical estimation with a signal known to be spars...
International audienceWe study the problem of statistical estimation with a signal known to be spars...
International audienceWe consider structure discovery of undirected graphical models from observatio...
Belilovsky E., Kastner K., Varoquaux G., Blaschko M., ''Learning to discover sparse graphical models...
The goal of the thesis is to propose methods for learning sparse and structured models from data tha...
© 2017 International Machine Learning Society (IMLS). All rights reserved. We consider structure dis...
International audienceWe consider structure discovery of undirected graphical models from observatio...
International audienceWe consider structure discovery of undirected graphical models from observatio...
International audienceWe consider structure discovery of undirected graphical models from observatio...
International audienceWe consider structure discovery of undirected graphical models from observatio...
© 2015, The Author(s). We study the problem of statistical estimation with a signal known to be spar...