Le théorème de Mordell-Weil affirme que, pour toute variété abélienne définie sur un corps de nombres, le groupe des points K-rationnels est de type fini. Plus exactement, ce groupe peut être vu comme le produit d’un groupe libre et d’un sous-groupe fini de points de torsion définis sur K. Il est naturel de se demander si l’on peut obtenir une borne uniforme pour le cardinal du sous-groupe fini des points de torsion définis sur une extension finie de K, dépendant uniquement du degré de cette extension, lorsque la variété abélienne varie. Pour ce qui est des courbes elliptiques définies sur un corps de nombres, Merel a prouvé en 1994 que l’on peut obtenir une borne uniforme en utilisant des méthodes développées par Mazur, Kenku-Momose et Kam...
Nous savons, grâce au théorème de Mordell Weil, que les points rationnels d unecourbe elliptique E d...
Let d be an integer and let K be a number field of degree d over Q. By the Mordell- Weil theorem we ...
The Mordell-Weil Theorem states that if K is a number field and E/K is an elliptic curve that the gr...
Abstract. Let A be an abelian variety defined over a number field K. It is proved that for the compo...
Let A be an abelian variety defined over a number field K. It is proved that for the composite field...
AbstractWe show that the p-torsion in the Tate–Shafarevich group of any principally polarized abelia...
We answer a question raised by Hindry and Ratazzi concerning the intersection between cyclotomic ext...
We answer a question raised by Hindry and Ratazzi concerning the intersection between cyclotomic ext...
Let $E$ be an elliptic curve defined over $\mathbb{Q}$. We investigate $E(K)_{\text{tors}}$ for vari...
Let $A$ be an abelian variety over a $p$-adic field $K$ and $L$ an algebraic infinite extension over...
Let $E$ be an elliptic curve defined over $\mathbb{Q}$. We investigate $E(K)_{\text{tors}}$ for vari...
Let $A$ be an abelian variety defined over a number field $K$. For a finite extension $L/K$, the car...
Let $E$ be an elliptic curve defined over $\mathbb{Q}$. We investigate $E(K)_{\text{tors}}$ for vari...
The Mordell-Weil Theorem states that if K is a number field and E/K is an elliptic curve that the gr...
The Mordell-Weil Theorem states that if K is a number field and E/K is an elliptic curve that the gr...
Nous savons, grâce au théorème de Mordell Weil, que les points rationnels d unecourbe elliptique E d...
Let d be an integer and let K be a number field of degree d over Q. By the Mordell- Weil theorem we ...
The Mordell-Weil Theorem states that if K is a number field and E/K is an elliptic curve that the gr...
Abstract. Let A be an abelian variety defined over a number field K. It is proved that for the compo...
Let A be an abelian variety defined over a number field K. It is proved that for the composite field...
AbstractWe show that the p-torsion in the Tate–Shafarevich group of any principally polarized abelia...
We answer a question raised by Hindry and Ratazzi concerning the intersection between cyclotomic ext...
We answer a question raised by Hindry and Ratazzi concerning the intersection between cyclotomic ext...
Let $E$ be an elliptic curve defined over $\mathbb{Q}$. We investigate $E(K)_{\text{tors}}$ for vari...
Let $A$ be an abelian variety over a $p$-adic field $K$ and $L$ an algebraic infinite extension over...
Let $E$ be an elliptic curve defined over $\mathbb{Q}$. We investigate $E(K)_{\text{tors}}$ for vari...
Let $A$ be an abelian variety defined over a number field $K$. For a finite extension $L/K$, the car...
Let $E$ be an elliptic curve defined over $\mathbb{Q}$. We investigate $E(K)_{\text{tors}}$ for vari...
The Mordell-Weil Theorem states that if K is a number field and E/K is an elliptic curve that the gr...
The Mordell-Weil Theorem states that if K is a number field and E/K is an elliptic curve that the gr...
Nous savons, grâce au théorème de Mordell Weil, que les points rationnels d unecourbe elliptique E d...
Let d be an integer and let K be a number field of degree d over Q. By the Mordell- Weil theorem we ...
The Mordell-Weil Theorem states that if K is a number field and E/K is an elliptic curve that the gr...