Le mode adjoint de la Différentiation Algorithmique (DA) est particulièrement intéressant pour le calcul des gradients. Cependant, ce mode utilise les valeurs intermédiaires de la simulation d'origine dans l'ordre inverse à un coût qui augmente avec la longueur de la simulation. La DA cherche des stratégies pour réduire ce coût, par exemple en profitant de la structure du programme donné. Dans ce travail, nous considérons d'une part le cas des boucles à point-fixe pour lesquels plusieurs auteurs ont proposé des stratégies adjointes adaptées. Parmi ces stratégies, nous choisissons celle de B. Christianson. Nous spécifions la méthode choisie et nous décrivons la manière dont nous l'avons implémentée dans l'outil de DA Tapenade. Les expérience...
International audienceWe present Automatic Differentiation (AD),a technique to obtain derivatives of...
Adjoint algorithmic differentiation by operator and function overloading is based on the interpretat...
AbstractAn essential performance and correctness factor in numerical simulation and optimization is ...
The adjoint mode of Algorithmic Differentiation (AD) is particularly attractive for computing gradie...
International audienceThe computation of gradients via the reverse mode of algorithmic differentiati...
International audienceA computational fluid dynamics code is differentiated using algorithmic differ...
ABSTRACT. Adjoint methods are the choice approach to obtain gradients of large simulation codes. Aut...
International audienceA computational fluid dynamics code relying on a high-order spatial discretiza...
PhDSimulations are used in science and industry to predict the performance of technical systems. Ad...
This dissertation is concerned with algorithmic differentiation (AD), which is a method for algorith...
International audienceWe illustrate the benefits of Algorithmic Differentiation (AD) for the develop...
The context of this work is Automatic Differentiation (AD). Fundamentally, AD transforms a program t...
Adjoint algorithms, and in particular those obtained through the adjoint mode of Automatic Different...
Notre contribution concerne les trois domaines complémentaires suivants: la différentiation automati...
International audienceAlgorithmic Differentiation (AD) provides the analytic derivatives of function...
International audienceWe present Automatic Differentiation (AD),a technique to obtain derivatives of...
Adjoint algorithmic differentiation by operator and function overloading is based on the interpretat...
AbstractAn essential performance and correctness factor in numerical simulation and optimization is ...
The adjoint mode of Algorithmic Differentiation (AD) is particularly attractive for computing gradie...
International audienceThe computation of gradients via the reverse mode of algorithmic differentiati...
International audienceA computational fluid dynamics code is differentiated using algorithmic differ...
ABSTRACT. Adjoint methods are the choice approach to obtain gradients of large simulation codes. Aut...
International audienceA computational fluid dynamics code relying on a high-order spatial discretiza...
PhDSimulations are used in science and industry to predict the performance of technical systems. Ad...
This dissertation is concerned with algorithmic differentiation (AD), which is a method for algorith...
International audienceWe illustrate the benefits of Algorithmic Differentiation (AD) for the develop...
The context of this work is Automatic Differentiation (AD). Fundamentally, AD transforms a program t...
Adjoint algorithms, and in particular those obtained through the adjoint mode of Automatic Different...
Notre contribution concerne les trois domaines complémentaires suivants: la différentiation automati...
International audienceAlgorithmic Differentiation (AD) provides the analytic derivatives of function...
International audienceWe present Automatic Differentiation (AD),a technique to obtain derivatives of...
Adjoint algorithmic differentiation by operator and function overloading is based on the interpretat...
AbstractAn essential performance and correctness factor in numerical simulation and optimization is ...