Le problème de l'indice est de calculer l'indice d'un opérateur elliptique en termes topologiques. Ce problème fut résolu par M. Atiyah et I. Singer en 1963 dans "The index of elliptic operators on compact manifolds". Quelques années plus tard, ces auteurs ont fourni une nouvelle preuve dans "The index of elliptic operators I" permettant plusieurs généralisations et applications. La première est la prise en compte de l'action d'un groupe compact G, dans ce cadre on obtient une égalité dans l'anneau des représentations de G. Par la suite ils ont généralisé ce résultat au cadre des familles d'opérateurs elliptiques paramétrées par un espace compact dans "The index of elliptic operators IV", ici l'égalité vit dans la K-théorie de l'espace para...
© Copyright 2005 Geometry & TopologyAn index theory for projective families of elliptic pseudodiffer...
International audienceWe define the Chern character of the index class of a G-invariant family of G-...
For any Lie groupoid, we construct an analytic index morphism taking values in a modified K-theory g...
The index problem is to calculate the index of an elliptic operator in topological terms. This probl...
The index problem is to calculate the index of an elliptic operator in topological terms. This probl...
41 pagesInternational audienceIn 1996, Berline and Vergne gave a cohomological formula for the index...
41 pagesInternational audienceIn 1996, Berline and Vergne gave a cohomological formula for the index...
41 pagesInternational audienceIn 1996, Berline and Vergne gave a cohomological formula for the index...
We prove a formula for the multiplicities of the index of an equivariant transversally elliptic oper...
We prove a formula for the multiplicities of the index of an equivariant transversally elliptic oper...
International audienceWe define and study the index map for families of G-transversally elliptic ope...
We prove a formula for the multiplicities of the index of an equivariant transversally elliptic oper...
We prove a formula for the multiplicities of the index of an equivariant transversally elliptic oper...
Let $1 \to \Gamma \to \tilde{G} \to G \to 1$ be a central extension by an abelian finite group. In t...
AbstractMathai, Melrose, and Singer introduced the notion of projective elliptic operators on manifo...
© Copyright 2005 Geometry & TopologyAn index theory for projective families of elliptic pseudodiffer...
International audienceWe define the Chern character of the index class of a G-invariant family of G-...
For any Lie groupoid, we construct an analytic index morphism taking values in a modified K-theory g...
The index problem is to calculate the index of an elliptic operator in topological terms. This probl...
The index problem is to calculate the index of an elliptic operator in topological terms. This probl...
41 pagesInternational audienceIn 1996, Berline and Vergne gave a cohomological formula for the index...
41 pagesInternational audienceIn 1996, Berline and Vergne gave a cohomological formula for the index...
41 pagesInternational audienceIn 1996, Berline and Vergne gave a cohomological formula for the index...
We prove a formula for the multiplicities of the index of an equivariant transversally elliptic oper...
We prove a formula for the multiplicities of the index of an equivariant transversally elliptic oper...
International audienceWe define and study the index map for families of G-transversally elliptic ope...
We prove a formula for the multiplicities of the index of an equivariant transversally elliptic oper...
We prove a formula for the multiplicities of the index of an equivariant transversally elliptic oper...
Let $1 \to \Gamma \to \tilde{G} \to G \to 1$ be a central extension by an abelian finite group. In t...
AbstractMathai, Melrose, and Singer introduced the notion of projective elliptic operators on manifo...
© Copyright 2005 Geometry & TopologyAn index theory for projective families of elliptic pseudodiffer...
International audienceWe define the Chern character of the index class of a G-invariant family of G-...
For any Lie groupoid, we construct an analytic index morphism taking values in a modified K-theory g...