The selection of a proper model is an essential task in statistical learning. In general, for a given learning task, a set of parameters has to be chosen, each parameter corresponds to a different degree of “complexity”. In this situation, the model selection procedure becomes a search for the optimal “complexity”, allowing us to estimate a model that assures a good generalization. This model selection problem can be summarized as the calculation of one or more hyperparameters defining the model complexity in contrast to the parameters that allow to specify a model in the chosen complexity class. The usual approach to determine these parameters is to use a “grid search”. Given a set of possible values, the generalization error for the best ...
Diplôme : Dr. d'UniversitéThis thesis takes place within the framework of statistical learning. We s...
Bertrand Fourcade (Président du Jury) David Sherrington (Rapporteur) Jean-Pierre Nadal (Rapporteur) ...
One common way of describing the tasks addressable by machine learning is to break them down into th...
The selection of a proper model is an essential task in statistical learning. In general, for a give...
The selection of a proper model is an essential task in statistical learning. In general, for a give...
The selection of a proper model is an essential task in statistical learning. In general, for a give...
The selection of a proper model is an essential task in statistical learning. In general, for a give...
La sélection d’un modèle approprié est l’une des tâches essentielles de l’apprentissage statistique....
Model selection is of major interest in statistical learning. In this document, we introduce model s...
La sélection de modèle est un thème majeur de l'apprentissage statistique. Dans ce manuscrit, nous i...
La sélection de modèle est un thème majeur de l'apprentissage statistique. Dans ce manuscrit, nous i...
One of the fundamental problems in statistical machine learning is the optimization problem under th...
This manuscript addresses the problem of model selection, studied in the linear regression framework...
This manuscript addresses the problem of model selection, studied in the linear regression framework...
La sélection de modèle est un thème majeur de l'apprentissage statistique. Dans ce manuscrit, nous i...
Diplôme : Dr. d'UniversitéThis thesis takes place within the framework of statistical learning. We s...
Bertrand Fourcade (Président du Jury) David Sherrington (Rapporteur) Jean-Pierre Nadal (Rapporteur) ...
One common way of describing the tasks addressable by machine learning is to break them down into th...
The selection of a proper model is an essential task in statistical learning. In general, for a give...
The selection of a proper model is an essential task in statistical learning. In general, for a give...
The selection of a proper model is an essential task in statistical learning. In general, for a give...
The selection of a proper model is an essential task in statistical learning. In general, for a give...
La sélection d’un modèle approprié est l’une des tâches essentielles de l’apprentissage statistique....
Model selection is of major interest in statistical learning. In this document, we introduce model s...
La sélection de modèle est un thème majeur de l'apprentissage statistique. Dans ce manuscrit, nous i...
La sélection de modèle est un thème majeur de l'apprentissage statistique. Dans ce manuscrit, nous i...
One of the fundamental problems in statistical machine learning is the optimization problem under th...
This manuscript addresses the problem of model selection, studied in the linear regression framework...
This manuscript addresses the problem of model selection, studied in the linear regression framework...
La sélection de modèle est un thème majeur de l'apprentissage statistique. Dans ce manuscrit, nous i...
Diplôme : Dr. d'UniversitéThis thesis takes place within the framework of statistical learning. We s...
Bertrand Fourcade (Président du Jury) David Sherrington (Rapporteur) Jean-Pierre Nadal (Rapporteur) ...
One common way of describing the tasks addressable by machine learning is to break them down into th...