Les travaux de cette thèse portent sur les prédérivées d'applications multivoques et la théorie de l'optimisation. Dans un premier temps, nous établissons des résultats d'existence de différents types de prédérivées pour certaines classes d'applications. Spécialement, pour des applications multivoques possédant certaines propriétés de convexité. Par la suite, nous appliquons ces résultats dans le cadre de la théorie de l'optimisation multivoque en établissant des conditions nécessaires et des conditions suffisantes d'optimalité. Sous des hypothèses de convexité, nous établissons des résultats naturels propres aux minimiseurs en optimisation convexe. Ensuite, nous appliquons quelques uns de nos résultats théoriques à un modèle de l'économ...
This paper primarily concerns the study of general classes of constrained multiobjective optimizatio...
This paper gives the formal definition of a class of optimization problems, that is, problems of fin...
This book is devoted to vector or multiple criteria approaches in optimization. Topics covered inclu...
Abstract: In this paper, we define several relations of two sets with respect to an ordering convex ...
Set-valued optimization is a vibrant and expanding branch of mathematics that deals with optimizatio...
This paper primarily concerns the study of general classes of constrained multiobjective optimizatio...
AbstractThis paper deals with the minimization problems of set-valued maps in the real linear spaces...
We introduce a class of positively homogeneous set-valued mappings, called inner prederivatives, ser...
summary:In this paper we study set-valued optimization problems with equilibrium constraints (SOPEC...
Focussing on optimization problems involving multivalued mappings in constraints or as the objective...
En optimisation les conditions d optimalité jouent un rôle primordial pour détecter les solutions op...
In this paper we study set-valued optimization problems with equilibrium constraints (SOPEOs) descri...
The object of this thesis is two - fold . In the first part, we develop analogs of convex and noncon...
Abstract: In this paper we study set-valued optimization problems with equilibrium constraints (SOPE...
The main aim of this paper is to obtain optimality conditions for a constrained set-valued optimizat...
This paper primarily concerns the study of general classes of constrained multiobjective optimizatio...
This paper gives the formal definition of a class of optimization problems, that is, problems of fin...
This book is devoted to vector or multiple criteria approaches in optimization. Topics covered inclu...
Abstract: In this paper, we define several relations of two sets with respect to an ordering convex ...
Set-valued optimization is a vibrant and expanding branch of mathematics that deals with optimizatio...
This paper primarily concerns the study of general classes of constrained multiobjective optimizatio...
AbstractThis paper deals with the minimization problems of set-valued maps in the real linear spaces...
We introduce a class of positively homogeneous set-valued mappings, called inner prederivatives, ser...
summary:In this paper we study set-valued optimization problems with equilibrium constraints (SOPEC...
Focussing on optimization problems involving multivalued mappings in constraints or as the objective...
En optimisation les conditions d optimalité jouent un rôle primordial pour détecter les solutions op...
In this paper we study set-valued optimization problems with equilibrium constraints (SOPEOs) descri...
The object of this thesis is two - fold . In the first part, we develop analogs of convex and noncon...
Abstract: In this paper we study set-valued optimization problems with equilibrium constraints (SOPE...
The main aim of this paper is to obtain optimality conditions for a constrained set-valued optimizat...
This paper primarily concerns the study of general classes of constrained multiobjective optimizatio...
This paper gives the formal definition of a class of optimization problems, that is, problems of fin...
This book is devoted to vector or multiple criteria approaches in optimization. Topics covered inclu...