Le codage parcimonieux permet la reconstruction d'un signal à partir de quelques projections linéaires de celui-ci, sous l'hypothèse que le signal se décompose de manière parcimonieuse, c'est-à-dire avec peu de coefficients, sur un dictionnaire connu. Le codage est simple, et la complexité est déportée sur la reconstruction. Après une explication détaillée du fonctionnement du codage parcimonieux, une présentation de quelques résultats théoriques et quelques simulations pour cerner les performances envisageables, nous nous intéressons à trois problèmes : d'abord, l'étude de conception d'un système permettant le codage d'un signal par une matrice binaire, et des avantages apportés par une telle implémentation. Ensuite, nous nous intéressons ...
AbstractThis article presents novel results concerning the recovery of signals from undersampled dat...
This short note studies a variation of the compressed sensing paradigm introduced recently by Vaswan...
The recently introduced theory of compressed sensing enables the reconstruction of sparse or compre...
Compressed sensing allows to reconstruct a signal from a few linear projections, under the assumptio...
La modélisation des signaux peut être vue comme la pierre angulaire de la méthodologie contemporaine...
Mathematical approaches refer to make quantitative descriptions, deductions and calculations through...
42 pages, 37 figures, 3 appendixesInternational audienceCompressed sensing is a signal processing me...
Abstract- Compressed Sensing (CS) is an emerging signal acquisition theory that provides a universal...
Cette thèse est motivée par la perspective de rapprochement entre traitement du signal et apprentiss...
Compressive sampling (CS), also called compressed sensing, entails making observations of an unknown...
Compressed sensing is a new concept in signal processing where one seeks to minimize the number of m...
Abstract Compressed sensing was introduced some ten years ago as an effective way of acquiring signa...
The information management has been treated primarily under the Nyquist sampling theory, but it is i...
L'utilisation d'algorithmes itératifs est aujourd'hui largement répandue dans tous les domaines du t...
Compressed sensing takes advantage that most of the natural signals can be sparsely represented via ...
AbstractThis article presents novel results concerning the recovery of signals from undersampled dat...
This short note studies a variation of the compressed sensing paradigm introduced recently by Vaswan...
The recently introduced theory of compressed sensing enables the reconstruction of sparse or compre...
Compressed sensing allows to reconstruct a signal from a few linear projections, under the assumptio...
La modélisation des signaux peut être vue comme la pierre angulaire de la méthodologie contemporaine...
Mathematical approaches refer to make quantitative descriptions, deductions and calculations through...
42 pages, 37 figures, 3 appendixesInternational audienceCompressed sensing is a signal processing me...
Abstract- Compressed Sensing (CS) is an emerging signal acquisition theory that provides a universal...
Cette thèse est motivée par la perspective de rapprochement entre traitement du signal et apprentiss...
Compressive sampling (CS), also called compressed sensing, entails making observations of an unknown...
Compressed sensing is a new concept in signal processing where one seeks to minimize the number of m...
Abstract Compressed sensing was introduced some ten years ago as an effective way of acquiring signa...
The information management has been treated primarily under the Nyquist sampling theory, but it is i...
L'utilisation d'algorithmes itératifs est aujourd'hui largement répandue dans tous les domaines du t...
Compressed sensing takes advantage that most of the natural signals can be sparsely represented via ...
AbstractThis article presents novel results concerning the recovery of signals from undersampled dat...
This short note studies a variation of the compressed sensing paradigm introduced recently by Vaswan...
The recently introduced theory of compressed sensing enables the reconstruction of sparse or compre...