Cette thèse est consacrée à une analyse approfondie de la capacité des "réseaux de neurones artificiels" (RNA) à la prédiction des mouvements sismiques. Un premier volet important concerne la dérivation par RNA de "GMPE" (équations de prédiction du mouvement du sol) et la comparaison des performances ainsi obtenues avec celles des GMPE "classiques" obtenues sur la base de régressions empiriques avec une forme fonctionnelle préétablie (plus ou moins complexe). Pour effectuer l’étude comparative et obtenir les deux composnates inter-événement « betweeen-event » et intra-événement « within-event » de la variabilité aléatoire, nous intégrons l’algorithme du « modèle à effets aléatoires » à l’approche neuronale. Cette approche est testée sur dif...
In this study, the main effort was evaluating the efficiency of artificial intelligence-based machin...
International audienceThe impact of non-linear soil behavior on site response may be described by th...
Accurately characterizing ground motions is crucial for estimating probabilistic seismic hazard and ...
This thesis is devoted to an in-depth analysis of the ability of "Artificial Neural Networks" (ANN) ...
Soutenue à l'université de Tlemcen (Algérie)The main purpose of this works is to analyze the ability...
Ground-motion prediction equations (GMPEs) are used to express seismic intensity mea-sures as a func...
This poster presents a New Zealand-specific simulation-based ground motion model (GMM) developed usi...
Probabilistic seismic hazard analysis (PSHA) based on physics-based simulations offers many advanta...
Abstract—Recording of ground motions with high amplitudes of acceleration and velocity play a key ro...
Recording of ground motions with high amplitudes of acceleration and velocity play a key role for d...
This paper aims to predict ground acceleration, speed, and maximum displacement using Artificial Neu...
In this study, the main effort was evaluating the efficiency of artificial intelligence-based machin...
International audienceThe impact of non-linear soil behavior on site response may be described by th...
Accurately characterizing ground motions is crucial for estimating probabilistic seismic hazard and ...
This thesis is devoted to an in-depth analysis of the ability of "Artificial Neural Networks" (ANN) ...
Soutenue à l'université de Tlemcen (Algérie)The main purpose of this works is to analyze the ability...
Ground-motion prediction equations (GMPEs) are used to express seismic intensity mea-sures as a func...
This poster presents a New Zealand-specific simulation-based ground motion model (GMM) developed usi...
Probabilistic seismic hazard analysis (PSHA) based on physics-based simulations offers many advanta...
Abstract—Recording of ground motions with high amplitudes of acceleration and velocity play a key ro...
Recording of ground motions with high amplitudes of acceleration and velocity play a key role for d...
This paper aims to predict ground acceleration, speed, and maximum displacement using Artificial Neu...
In this study, the main effort was evaluating the efficiency of artificial intelligence-based machin...
International audienceThe impact of non-linear soil behavior on site response may be described by th...
Accurately characterizing ground motions is crucial for estimating probabilistic seismic hazard and ...