La régression Partial Least Squares (PLS), de part ses caractéristiques, est devenue une méthodologie statistique de choix pour le traitement de jeux de données issus d’études génomiques. La fiabilité de la régression PLS et de certaines de ses extensions repose, entre autres, sur une détermination robuste d’un hyperparamètre, le nombre de composantes. Une telle détermination reste un objectif important à ce jour, aucun critère existant ne pouvant être considéré comme globalement satisfaisant. Nous avons ainsi élaboré un nouveau critère de choix pour la sélection du nombre de composantes PLS basé sur la technique du bootstrap et caractérisé notamment par une forte stabilité. Nous avons ensuite pu l’adapter et l’utiliser à des fins de dévelo...
I denne oppgaven har vi utviklet en PLS beslektet metode som for multivariate regresjonsproblemer k...
A common problem in applied regression analysis is to select the variables that enter a linear regre...
A procedure called GOLPE is suggested in order to detect those variables which increase the predicti...
La régression Partial Least Squares (PLS), de part ses caractéristiques, est devenue une méthodologi...
The Partial Least Squares (PLS) regression, through its properties, has become a versatile statistic...
International audienceMethods based on partial least squares (PLS) regression, which has recently ga...
A challenging problem in the analysis of high-dimensional data is variable selection. In this study...
Partial least squares (PLS) is a class of statistical methods for multivariate data analysis. In the...
Recent developments in technology enable collecting a large amount of data from various sources. Mor...
International audienceIn the supervised high dimensional settings with a large number of variables a...
The selection of the optimal number of components remains a difficult but essential task in partial ...
Using a metabolomics data set with 1057 serum samples, we designed and assessed different procedures...
ABSTRACT This paper presents a methodology that eliminates multicollinearity of the predictors vari...
Ce travail est une contribution à la sélection de modèles statistiques et plus précisément à la séle...
PLS univariate regression is a model linking a dependent variable y to a set X={x1, , xp} of (numer...
I denne oppgaven har vi utviklet en PLS beslektet metode som for multivariate regresjonsproblemer k...
A common problem in applied regression analysis is to select the variables that enter a linear regre...
A procedure called GOLPE is suggested in order to detect those variables which increase the predicti...
La régression Partial Least Squares (PLS), de part ses caractéristiques, est devenue une méthodologi...
The Partial Least Squares (PLS) regression, through its properties, has become a versatile statistic...
International audienceMethods based on partial least squares (PLS) regression, which has recently ga...
A challenging problem in the analysis of high-dimensional data is variable selection. In this study...
Partial least squares (PLS) is a class of statistical methods for multivariate data analysis. In the...
Recent developments in technology enable collecting a large amount of data from various sources. Mor...
International audienceIn the supervised high dimensional settings with a large number of variables a...
The selection of the optimal number of components remains a difficult but essential task in partial ...
Using a metabolomics data set with 1057 serum samples, we designed and assessed different procedures...
ABSTRACT This paper presents a methodology that eliminates multicollinearity of the predictors vari...
Ce travail est une contribution à la sélection de modèles statistiques et plus précisément à la séle...
PLS univariate regression is a model linking a dependent variable y to a set X={x1, , xp} of (numer...
I denne oppgaven har vi utviklet en PLS beslektet metode som for multivariate regresjonsproblemer k...
A common problem in applied regression analysis is to select the variables that enter a linear regre...
A procedure called GOLPE is suggested in order to detect those variables which increase the predicti...