Un des objectifs les plus importants en classification non supervisée est d'extraire des groupes de similarité depuis un jeu de données. Avec le développement actuel du phénotypage où les données sont recueillies en temps continu, de plus en plus d'utilisateurs ont besoin d'outils capables de classer des courbes.Le travail présenté dans cette thèse se fonde sur la statistique bayésienne. Plus précisément, nous nous intéressons à la classification bayésienne non supervisée de données fonctionnelles. Les lois a priori bayésiennes non paramétriques permettent la construction de modèles flexibles et robustes.Nous généralisons un modèle de classification (DPM), basé sur le processus de Dirichlet, au cadre fonctionnel. Contrairement aux méthodes ...