Dans cette thèse nous étudions le groupe quantique d’automorphismes des graphes finis, introduit par Banica et Bichon. Dans un premier temps nous montrerons un théorème de structure du groupe quantique d’automorphismes du produit lexicographique de deux graphes finis réguliers, qui généralise un résultat classique de Sabidussi. Ce théorème donne une condition nécessaire et suffisante pour que ce groupe quantique s’exprime comme le produit en couronne libre des groupes quantiques d’automorphismes de ces deux graphes. Dans un deuxième temps, nous expliciterons certaines améliorations de résultats de Banica, Bichon et Chenevier permettant d’obtenir des critères de non symétrie quantique sur les graphes, à l’aide des outils développés par les a...
13 pagesWe consider circulant graphs having p vertices, with p prime. To any such graph we associate...
The permutation group $S_N$ has a quantum analogue $S_N^+$, which is infinite at $N\geq4$. We review...
We formulate a notion of the quantum automorphism groups of $2$-graphs. We show that two isomorphic ...
In this thesis we study the quantum automorphism group of finite graphs, introduces by Banica and Bi...
In this thesis we study the quantum automorphism group of finite graphs, introduces by Banica and Bi...
We study the quantum automorphism group of the lexicographic product of two finite regular graphs, p...
Abstract. Associated to a finite graph X is its quantum automorphism group G(X). We prove a formula ...
Abstract. Associated to a finite graph X is its quantum automorphism group G(X). We prove a formula ...
We study the quantum automorphism group of the lexicographic product of two finite regular graphs, p...
We study Cayley graphs of abelian groups from the perspective of quantum symmetries. We develop a ge...
We define and study quantum permutations of infinite sets. This leads to discrete quantum groups whi...
We introduce the theory of quantum symmetry of a graph by starting with quantum permutation groups a...
We show that the quantum automorphism group of the Clebsch graph is $SO_5^{-1}$. This answers a ques...
We construct a braided analogue of the quantum permutation group and show that it is the universal b...
Motivated by string diagrammatic approach to undirected tracial quantum graphs by Musto, Reutter, Ve...
13 pagesWe consider circulant graphs having p vertices, with p prime. To any such graph we associate...
The permutation group $S_N$ has a quantum analogue $S_N^+$, which is infinite at $N\geq4$. We review...
We formulate a notion of the quantum automorphism groups of $2$-graphs. We show that two isomorphic ...
In this thesis we study the quantum automorphism group of finite graphs, introduces by Banica and Bi...
In this thesis we study the quantum automorphism group of finite graphs, introduces by Banica and Bi...
We study the quantum automorphism group of the lexicographic product of two finite regular graphs, p...
Abstract. Associated to a finite graph X is its quantum automorphism group G(X). We prove a formula ...
Abstract. Associated to a finite graph X is its quantum automorphism group G(X). We prove a formula ...
We study the quantum automorphism group of the lexicographic product of two finite regular graphs, p...
We study Cayley graphs of abelian groups from the perspective of quantum symmetries. We develop a ge...
We define and study quantum permutations of infinite sets. This leads to discrete quantum groups whi...
We introduce the theory of quantum symmetry of a graph by starting with quantum permutation groups a...
We show that the quantum automorphism group of the Clebsch graph is $SO_5^{-1}$. This answers a ques...
We construct a braided analogue of the quantum permutation group and show that it is the universal b...
Motivated by string diagrammatic approach to undirected tracial quantum graphs by Musto, Reutter, Ve...
13 pagesWe consider circulant graphs having p vertices, with p prime. To any such graph we associate...
The permutation group $S_N$ has a quantum analogue $S_N^+$, which is infinite at $N\geq4$. We review...
We formulate a notion of the quantum automorphism groups of $2$-graphs. We show that two isomorphic ...