Développer un programme capable de jouer à n’importe quel jeu de stratégie, souvent désigné par le General Game Playing (GGP) constitue un des Graal de l’intelligence artificielle. Les compétitions GGP, où chaque jeu est représenté par un ensemble de règles logiques au travers du Game Description Language (GDL), ont conduit la recherche à confronter de nombreuses approches incluant les méthodes de type Monte Carlo, la construction automatique de fonctions d’évaluation, ou la programmation logique et ASP. De par cette thèse, nous proposons une nouvelle approche dirigée par les contraintes stochastiques.Dans un premier temps, nous nous concentrons sur l’élaboration d’une traduction de GDL en réseauxde contraintes stochastiques (SCSP) dans le ...