En se fondant sur les travaux de Trimble et al., puis Hughes, on donne une notion de théorie symétrique monoïdale close (smc) et une construction explicite de la catégorie smc engendrée, formant ainsi une adjonction entre théories et catégories. On étudie les exemples du lambda-calcul pur linéaire, du lambda-calcul pur standard, puis des bigraphes de Milner. À chaque fois on donne une théorie smc et on compare la catégorie smc engendrée avec la présentation standard. Entre autres, dans les trois cas, on montre une équivalence entre les deux sur les termes clos.From the work of Trimble et al. and Hughes, we define a notion of symmetric monoidal closed (smc) theory and give an explicit construction of the smc category generated by it. This co...
AbstractVarious situations in computer science call for categories that support both cartesian close...
focus on a simple observation that a traced monoidal category C is closed if and only if the canonic...
AbstractWe study the coherence, that is the equality of canonical natural transformations in non-fre...
En se fondant sur les travaux de Trimble et al., puis Hughes, on donne une notion de théorie symétri...
An introduction to two more technical previous preprints.International audienceThis paper investigat...
Abstract. We define a notion of symmetric monoidal closed (smc) theory, consisting of a smc signatur...
Uses Paul Taylor's diagrams.We define a notion of symmetric monoidal closed (SMC) theory, consisting...
17 pages, uses Paul Taylor's diagrams.Milner's bigraphs are a general framework for reasoning about ...
AbstractWe consider several different sound and complete classes of models for the computational ·-c...
There are different notions of computation, the most popular being monads, applicative functors, and...
It is well-known that monads are monoids in the category of endo-functors, and in fact so are applic...
The main result of this paper shows how coalgebraic traces, in suitable Kleisli categories, give ris...
AbstractThe main result of this paper shows how coalgebraic traces, in suitable Kleisli categories, ...
grantor: University of TorontoIn this thesis we explore some uncharted areas of the theory...
AbstractVarious situations in computer science call for categories that support both cartesian close...
focus on a simple observation that a traced monoidal category C is closed if and only if the canonic...
AbstractWe study the coherence, that is the equality of canonical natural transformations in non-fre...
En se fondant sur les travaux de Trimble et al., puis Hughes, on donne une notion de théorie symétri...
An introduction to two more technical previous preprints.International audienceThis paper investigat...
Abstract. We define a notion of symmetric monoidal closed (smc) theory, consisting of a smc signatur...
Uses Paul Taylor's diagrams.We define a notion of symmetric monoidal closed (SMC) theory, consisting...
17 pages, uses Paul Taylor's diagrams.Milner's bigraphs are a general framework for reasoning about ...
AbstractWe consider several different sound and complete classes of models for the computational ·-c...
There are different notions of computation, the most popular being monads, applicative functors, and...
It is well-known that monads are monoids in the category of endo-functors, and in fact so are applic...
The main result of this paper shows how coalgebraic traces, in suitable Kleisli categories, give ris...
AbstractThe main result of this paper shows how coalgebraic traces, in suitable Kleisli categories, ...
grantor: University of TorontoIn this thesis we explore some uncharted areas of the theory...
AbstractVarious situations in computer science call for categories that support both cartesian close...
focus on a simple observation that a traced monoidal category C is closed if and only if the canonic...
AbstractWe study the coherence, that is the equality of canonical natural transformations in non-fre...