Les méthodes de NMF permettent la factorisation aveugle d'une matrice non-négative X en le produit X = G . F de deux matrices non-négatives G et F. Bien que ces approches sont étudiées avec un grand intêret par la communauté scientifique, elles souffrent bien souvent d'un manque de robustesse vis à vis des données et des conditions initiales et peuvent présenter des solutions multiples. Dans cette optique et afin de réduire l'espace des solutions admissibles, les travaux de cette thèse ont pour objectif d'informer la NMF, positionnant ainsi nos travaux entre la régression et les factorisations aveugles classiques. Par ailleurs, des fonctions de coûts paramétriques appelées divergences αβ sont utilisées, permettant de tolérer la présence d'...
Non-negative Matrix Factorisation (NMF) has become a standard method for source identification when ...
International audienceLiquid Chromatography-Mass Spectrometry (LC/MS) provides large datasets from w...
We discuss Non-negative Matrix Factorization (NMF) techniques from the point of view of Intelligent ...
NMF methods aim to factorize a non negative observation matrix X as the product X = G.F between two ...
NMF methods aim to factorize a non-negative observation matrix X as the product X = G·F between twon...
Le démélange de sources pour la pollution de l'air peut être formulé comme un problème de NMF en déc...
La factorisation en matrices non-négatives (NMF, de l’anglais non-negative matrix factorization) est...
International audienceIn this paper, we propose two weighted Non-negative Matrix Factorization (NMF)...
International audienceIn our recent work, we introduced a constrained weighted Non-negative Matrix F...
International audienceIn this paper, we propose informed weighted non-negative matrix factorization ...
Non-negative matrix factorisation (NMF) is attractive in data analysis because it can produce a spar...
This book collects new results, concepts and further developments of NMF. The open problems discusse...
This edited book collects new results, concepts and further developments of NMF. The open problems d...
International audienceIn a previous work, we proposed an informed Non-negative Matrix Factorization ...
Abstract Nonnegative Matrix Factorization (NMF) has been proved to be valuable in many ap-plications...
Non-negative Matrix Factorisation (NMF) has become a standard method for source identification when ...
International audienceLiquid Chromatography-Mass Spectrometry (LC/MS) provides large datasets from w...
We discuss Non-negative Matrix Factorization (NMF) techniques from the point of view of Intelligent ...
NMF methods aim to factorize a non negative observation matrix X as the product X = G.F between two ...
NMF methods aim to factorize a non-negative observation matrix X as the product X = G·F between twon...
Le démélange de sources pour la pollution de l'air peut être formulé comme un problème de NMF en déc...
La factorisation en matrices non-négatives (NMF, de l’anglais non-negative matrix factorization) est...
International audienceIn this paper, we propose two weighted Non-negative Matrix Factorization (NMF)...
International audienceIn our recent work, we introduced a constrained weighted Non-negative Matrix F...
International audienceIn this paper, we propose informed weighted non-negative matrix factorization ...
Non-negative matrix factorisation (NMF) is attractive in data analysis because it can produce a spar...
This book collects new results, concepts and further developments of NMF. The open problems discusse...
This edited book collects new results, concepts and further developments of NMF. The open problems d...
International audienceIn a previous work, we proposed an informed Non-negative Matrix Factorization ...
Abstract Nonnegative Matrix Factorization (NMF) has been proved to be valuable in many ap-plications...
Non-negative Matrix Factorisation (NMF) has become a standard method for source identification when ...
International audienceLiquid Chromatography-Mass Spectrometry (LC/MS) provides large datasets from w...
We discuss Non-negative Matrix Factorization (NMF) techniques from the point of view of Intelligent ...