Nous revisitons la méthode classique des paramétrices pour en déduire une minoration et une majoration gaussiennes, pour la solution fondamentale d'un opérateur parabolique général sous forme non divergentielle. Nous utilisons ensuite le fait que la fonction de Neumann Green, d'un opérateur parabolique général sur un ouvert borné régulier, peut être construite comme somme de la solution fondamentale et d'une intégrale de type simple couche parabolique pour établir une minoration gaussienne pour cette fonction de Neumann Green. Le point clef de la preuve réside dans l'effet régularisant, en temps, de l'intégrale de type simple couche. Nous démontrons aussi que cette approche peut être adaptée pour démontrer une minoration gaussienne pour la ...
International audienceOverview Stats Comments Citations 12 References 32 Related research 10 Downloa...
International audienceOverview Stats Comments Citations 12 References 32 Related research 10 Downloa...
In the setting of a manifold with doubling property satisfying a Gaussian upper estimate of the heat...
We revisit the parametrix method in order to obtain a gaussian two-sided bound for the fundamental s...
We revisit the parametrix method in order to obtain a gaussian two-sided bound for the fundamental s...
International audienceBased on the fact that the Neumann Green function can be constructed as a pert...
AbstractWe describe a method of obtaining Gaussian upper bounds on heat kernels which unifies and im...
Given a domain $\Omega$ of a complete Riemannian manifold $\mathcal{M}$ and define $\mathcal{A}$ to ...
International audienceGiven a domain $\Omega$ of a complete Riemannian manifold $\mathcal{M}$ and de...
Auscher, McIntosh and Tchamitchian studied the heat kernels of second order elliptic operators in d...
AbstractWe obtain a gaussian lower bound for the heat kernel associated to −ΔD + ∂∂t, where ΔD is th...
Let $\mathcal{H}=\sum_{j=1}^{m}X_{j}^{2}-\partial_{t}$ be a heat-type operator in $\mathbb{R}^{n+1}...
Let $\mathcal{H}=\sum_{j=1}^{m}X_{j}^{2}-\partial_{t}$ be a heat-type operator in $\mathbb{R}^{n+1}...
Let $\mathcal{H}=\sum_{j=1}^{m}X_{j}^{2}-\partial_{t}$ be a heat-type operator in $\mathbb{R}^{n+1}...
International audienceOverview Stats Comments Citations 12 References 32 Related research 10 Downloa...
International audienceOverview Stats Comments Citations 12 References 32 Related research 10 Downloa...
International audienceOverview Stats Comments Citations 12 References 32 Related research 10 Downloa...
In the setting of a manifold with doubling property satisfying a Gaussian upper estimate of the heat...
We revisit the parametrix method in order to obtain a gaussian two-sided bound for the fundamental s...
We revisit the parametrix method in order to obtain a gaussian two-sided bound for the fundamental s...
International audienceBased on the fact that the Neumann Green function can be constructed as a pert...
AbstractWe describe a method of obtaining Gaussian upper bounds on heat kernels which unifies and im...
Given a domain $\Omega$ of a complete Riemannian manifold $\mathcal{M}$ and define $\mathcal{A}$ to ...
International audienceGiven a domain $\Omega$ of a complete Riemannian manifold $\mathcal{M}$ and de...
Auscher, McIntosh and Tchamitchian studied the heat kernels of second order elliptic operators in d...
AbstractWe obtain a gaussian lower bound for the heat kernel associated to −ΔD + ∂∂t, where ΔD is th...
Let $\mathcal{H}=\sum_{j=1}^{m}X_{j}^{2}-\partial_{t}$ be a heat-type operator in $\mathbb{R}^{n+1}...
Let $\mathcal{H}=\sum_{j=1}^{m}X_{j}^{2}-\partial_{t}$ be a heat-type operator in $\mathbb{R}^{n+1}...
Let $\mathcal{H}=\sum_{j=1}^{m}X_{j}^{2}-\partial_{t}$ be a heat-type operator in $\mathbb{R}^{n+1}...
International audienceOverview Stats Comments Citations 12 References 32 Related research 10 Downloa...
International audienceOverview Stats Comments Citations 12 References 32 Related research 10 Downloa...
International audienceOverview Stats Comments Citations 12 References 32 Related research 10 Downloa...
In the setting of a manifold with doubling property satisfying a Gaussian upper estimate of the heat...