Cette thèse est dédiée à l’étude du phénomène d’explosion en temps fini pour les équations semi-linéaires des ondes. On traite deux modèles dans ce travail.Dans une première direction, on considère l’équation semi-linéaire des ondes à valeurs complexes avec une nonlinéarité en puissance. On caractérise d’abord toutes les solutions du problème stationnaire comme une famille à deux paramètres.Ensuite, on utilise une approche de système dynamique pour montrer que la solution en transformation auto-similaire s’approche d’une solution stationnaire particulière dans l’espace d’énergie, dans le cas des points non caractéristiques.Ceci donne le profil à l’explosion pour l’équation originale dans le cas non-caractéristique.Dans une seconde direction...
We consider the initial-boundary value problem for semilinear dissipative wave equations in noncylin...
A class of damped wave equations with superlinear source term is considered. It is shown that every ...
(Communicated by Grozdena Todorova) Abstract. This paper corrects Asakura's observation on semi...
AbstractIn this paper, we consider the semilinear wave equation with a power nonlinearity in one spa...
International audienceWe consider in this paper blow-up solutions of the semilinear wave equation in...
International audienceWe consider any blow-up solution of the semilinear wave equation with power no...
Actes électroniques disponibles sur : http://sedp.cedram.org/sedp-bin/fitem?id=SEDP_2009-2010____A11...
We consider the initial boundary value problem in exterior domain for semilinear wave equations with...
AbstractWe prove that solutions to the critical wave equation (1.1) with dimension n⩾4 can not be gl...
AbstractThis work presents the finite-time blow-up of solutions to the equation utt−Δu=a−k|u|p, in t...
AbstractThis work studies the finite-time blow-up of solutions to the equation utt−Δu=F(u) in Minkow...
Abstract. First we give a truly short proof of the major blow up result [Si] on higher dimensional s...
Abstract. We prove that solutions to the critical wave equation (1.1) with dimension n ≥ 4 can not b...
In this note we study the global existence of small data solutions to the Cauchy problem for the sem...
AbstractOne of the features of solutions of semilinear wave equations can be found in blow-up result...
We consider the initial-boundary value problem for semilinear dissipative wave equations in noncylin...
A class of damped wave equations with superlinear source term is considered. It is shown that every ...
(Communicated by Grozdena Todorova) Abstract. This paper corrects Asakura's observation on semi...
AbstractIn this paper, we consider the semilinear wave equation with a power nonlinearity in one spa...
International audienceWe consider in this paper blow-up solutions of the semilinear wave equation in...
International audienceWe consider any blow-up solution of the semilinear wave equation with power no...
Actes électroniques disponibles sur : http://sedp.cedram.org/sedp-bin/fitem?id=SEDP_2009-2010____A11...
We consider the initial boundary value problem in exterior domain for semilinear wave equations with...
AbstractWe prove that solutions to the critical wave equation (1.1) with dimension n⩾4 can not be gl...
AbstractThis work presents the finite-time blow-up of solutions to the equation utt−Δu=a−k|u|p, in t...
AbstractThis work studies the finite-time blow-up of solutions to the equation utt−Δu=F(u) in Minkow...
Abstract. First we give a truly short proof of the major blow up result [Si] on higher dimensional s...
Abstract. We prove that solutions to the critical wave equation (1.1) with dimension n ≥ 4 can not b...
In this note we study the global existence of small data solutions to the Cauchy problem for the sem...
AbstractOne of the features of solutions of semilinear wave equations can be found in blow-up result...
We consider the initial-boundary value problem for semilinear dissipative wave equations in noncylin...
A class of damped wave equations with superlinear source term is considered. It is shown that every ...
(Communicated by Grozdena Todorova) Abstract. This paper corrects Asakura's observation on semi...