On s'intéresse au problème d'interpolation d'une fonction numérique d'une ou plusieurs variables réelles lorsque qu'elle est connue pour satisfaire certaines propriétés comme, par exemple, la positivité, monotonie ou convexité. Deux méthodes d'interpolation sont étudiées. D'une part, une approche déterministe conduit à un problème d'interpolation optimale sous contraintes linéaires inégalité dans un Espace de Hilbert à Noyau Reproduisant (RKHS). D'autre part, une approche probabiliste considère le même problème comme un problème d'estimation d'une fonction dans un cadre bayésien. Plus précisément, on considère la Régression par Processus Gaussien ou Krigeage pour estimer la fonction à interpoler sous les contraintes linéaires de type inégal...