Mes travaux de thèse portent sur l’application de la théorie de l’échantillonnagecompressif (Compressed Sensing ou Compressive Sampling, CS) à la microscopie defluorescence, domaine en constante évolution et outil privilégié de la recherche fondamentaleen biologie. La récente théorie du CS a démontré que pour des signauxparticuliers, dits parcimonieux, il est possible de réduire la fréquence d’échantillonnagede l’information à une valeur bien plus faible que ne le prédit la théorie classiquede l’échantillonnage. La théorie du CS stipule qu’il est possible de reconstruireun signal, sans perte d’information, à partir de mesures aléatoires fortement incomplèteset/ou corrompues de ce signal à la seule condition que celui-ci présente unestructur...
La microscopie de fluorescence et la microscopie de localisation de molécules uniques (SMLM) permett...
Recent developments in fluorescence microscopy (spatial resolution improvement, sample-induced aberr...
International audienceCompressed Sensing (CS) provides a new framework for signal sampling, exploiti...
International audienceAbstract-In this work, we introduce an original strategy to apply the Compress...
Compressed sensing (CS) is a signal processing approach that solves ill-posed inverse problems, from...
International audienceIn this work, we introduce an original strategy to apply the Compressed Sensin...
The mathematical theory of Compressed Sensing (CS) is a recently developed framework that enables th...
Compressed sensing (CS) is a new sampling theory that was recently introduced for efficient acquisit...
Compressed sensing (CS) is a signal processing approach that solves ill-posed inverse problems, from...
Pour analyser la structure et la dynamique des échantillons, la biologie cellulaire repose sur l'uti...
La compréhension des processus cellulaires au niveau membranaire est un domaine d’étude important en...
Cette thèse propose trois contributions principales pour l'imagerie en microscope à fluorescence. (1...
In the past few years, the mathematical theory of compressed sensing (CS) has emerged as a new tool ...
La microscopie de fluorescence et la microscopie de localisation de molécules uniques (SMLM) permett...
Recent developments in fluorescence microscopy (spatial resolution improvement, sample-induced aberr...
International audienceCompressed Sensing (CS) provides a new framework for signal sampling, exploiti...
International audienceAbstract-In this work, we introduce an original strategy to apply the Compress...
Compressed sensing (CS) is a signal processing approach that solves ill-posed inverse problems, from...
International audienceIn this work, we introduce an original strategy to apply the Compressed Sensin...
The mathematical theory of Compressed Sensing (CS) is a recently developed framework that enables th...
Compressed sensing (CS) is a new sampling theory that was recently introduced for efficient acquisit...
Compressed sensing (CS) is a signal processing approach that solves ill-posed inverse problems, from...
Pour analyser la structure et la dynamique des échantillons, la biologie cellulaire repose sur l'uti...
La compréhension des processus cellulaires au niveau membranaire est un domaine d’étude important en...
Cette thèse propose trois contributions principales pour l'imagerie en microscope à fluorescence. (1...
In the past few years, the mathematical theory of compressed sensing (CS) has emerged as a new tool ...
La microscopie de fluorescence et la microscopie de localisation de molécules uniques (SMLM) permett...
Recent developments in fluorescence microscopy (spatial resolution improvement, sample-induced aberr...
International audienceCompressed Sensing (CS) provides a new framework for signal sampling, exploiti...