Une difféologie sur un ensemble arbitraire X, déclare, pour tout entier n,quelles applications de R[exposant n] vers X sont lisses. Cette idée est structurée par trois axiomes naturels : recouvrements, localité et compatibilité lisse. L’un des objectifs de cette thèse est de développer et d’étudier des outils classiques de la topologie algébrique dans le cadre difféologique. Parmi ces outils on se penche particulièrement sur les théories homologiques et cohomologiques généralisées. Un autre objectif est de montrer que les espaces difféologiques offrent un cadre assez naturel afin d’étudier les espaces singuliers : pseudo-variétés contrôlées à la Thom-Mather. On met en place les définitions de théories (co)homologiques généralisées dans la ...