Le silicium (Si) et le germanium (Ge) sont les matériaux de base utilisés dans les circuits intégrés. Cependant, à cause de leur gap indirect, ces matériaux ne sont pas adaptés à la fabrication de dispositifs d'émission de lumière, comme les lasers ou diodes électroluminescentes. Comparé au Si, le Ge pur possède des propriétés optiques uniques, à température ambiante son gap direct est de seulement 140 meV au-delà du gap indirect tandis qu'il est supérieur à 2 eV dans le cas du Si. Compte tenu du coefficient de dilatation thermique du Ge, deux fois plus grand que celui du Si, une croissance de Ge sur Si à hautes températures suivie d'un refroidissement à température ambiante permet de générer une contrainte en tension dans le Ge. Cependant,...
Germanium-on-silicon (Ge-on-Si) structure-based semiconductor devices are playing an increasingly im...
We report direct band gap optical gain of tensile strained n+ epitaxial Ge-on-Si at room temperature...
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2...
Dans le cadre de ce travail de thèse, nous avons étudié une approche permettant de réaliser les comp...
We have combined structural and optical characterizations to investigate the tensile-strained state...
Tensile-strained and n-doped Ge has emerged as a potential candidate for the realization ofoptoelect...
We have combined numerous characterization techniques to investigate the growth of tensile-strained ...
This article presents a novel method to grow a high-quality compressive-strain Ge epilayer on Si usi...
As the present Si Technology is reaching its physical and technological limits, the trend for the fu...
The need to improve the electronic device performance as well as an all-Si based integration has sig...
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, ...
Germanium (Ge) is a group-IV semiconductor promissing for both advanced electronics and photonics ap...
Cette thèse porte sur l étude de la croissance hétérogène de couches de GaP sur substrat Si et de na...
Tensile strained and n-doped germanium is a potential candidate to demonstrate a laser on silicon in...
A silicon-compatible laser source is of utmost importance for a successful photonic integrated circu...
Germanium-on-silicon (Ge-on-Si) structure-based semiconductor devices are playing an increasingly im...
We report direct band gap optical gain of tensile strained n+ epitaxial Ge-on-Si at room temperature...
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2...
Dans le cadre de ce travail de thèse, nous avons étudié une approche permettant de réaliser les comp...
We have combined structural and optical characterizations to investigate the tensile-strained state...
Tensile-strained and n-doped Ge has emerged as a potential candidate for the realization ofoptoelect...
We have combined numerous characterization techniques to investigate the growth of tensile-strained ...
This article presents a novel method to grow a high-quality compressive-strain Ge epilayer on Si usi...
As the present Si Technology is reaching its physical and technological limits, the trend for the fu...
The need to improve the electronic device performance as well as an all-Si based integration has sig...
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, ...
Germanium (Ge) is a group-IV semiconductor promissing for both advanced electronics and photonics ap...
Cette thèse porte sur l étude de la croissance hétérogène de couches de GaP sur substrat Si et de na...
Tensile strained and n-doped germanium is a potential candidate to demonstrate a laser on silicon in...
A silicon-compatible laser source is of utmost importance for a successful photonic integrated circu...
Germanium-on-silicon (Ge-on-Si) structure-based semiconductor devices are playing an increasingly im...
We report direct band gap optical gain of tensile strained n+ epitaxial Ge-on-Si at room temperature...
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2...