Le but de ce travail est de montrer comment la théorie des systèmes d’Euler permet de comparer, dans certaines extensions abéliennes, le module galoisien des unités globales modulo unités de Stark avec le module galoisien des p-classes d’idéaux. On ne s’intéresse ici qu’aux extensions abéliennes ayant pour corps de base k un corps quadratique imaginaire, ou un corps global de caractéristique non nulle. La conjecture de Gras prévoit que pour toute extension abélienne finie K/k, tout nombre premier p premier à [K : k], et tout Qp-caractère ψ irréductible et non trivial de Gal (K/k), les ψ-parties du groupe des p-classes de K et du groupe des unités de K modulo le groupe des unités de Stark ont le même cardinal. Après avoir démontré une versio...