Ce travail se situe dans le cadre de la régression non paramétrique univariée. Supposant la fonction de régression à variation bornée et partant du résultat selon lequel une telle fonction se décompose en la somme d’une fonction croissante et d’une fonction décroissante, nous proposons de construire et d’étudier un nouvel estimateur combinant les techniques d’estimation des modèles additifs et celles d’estimation sous contraintes de monotonie. Plus précisément, notreméthode consiste à itérer la régression isotonique selon l’algorithme backfitting. On dispose ainsià chaque itération d’un estimateur de la fonction de régression résultant de la somme d’une partiecroissante et d’une partie décroissante.Le premier chapitre propose un tour d’hori...
Suppose m(·) is a regression function which has a unique zero [theta]. The Robbins--Monro process X...
We study the isotonic regression estimator over a general countable pre-ordered set. We obtain the l...
<div><p>We present a new computational and statistical approach for fitting isotonic models under co...
This thesis is part of non parametric univariate regression. Assume that the regression function is ...
This article introduces a new nonparametric method for estimating a univariate regression function o...
This article explores some theoretical aspects of a recent nonparametric method for estima...
25 pages, 5 figuresInternational audienceIn the present paper, we propose and analyze a novel method...
Nous proposons une méthode d'inférence appelée «latent backfitting». Cette méthode est spécialement ...
This thesis will treat the subject of constrained statistical inference and will have its focus on i...
ing case antitonic regression. The corresponding umbrella term for both cases is monotonic regressio...
The present research work outlines the main ideas behind statistical regression by a 2-independent-v...
The character of nonparametric statistical methods is that they are constructed for very general sit...
Modelos de regressão não-linear têm se mostrado adequados para descrever curvas de crescimento de an...
This paper gives optimal algorithms for determining realvalued univariate unimodal regressions, that...
This paper gives algorithms for determining real-valued univariate unimodal regressions, that is, fo...
Suppose m(·) is a regression function which has a unique zero [theta]. The Robbins--Monro process X...
We study the isotonic regression estimator over a general countable pre-ordered set. We obtain the l...
<div><p>We present a new computational and statistical approach for fitting isotonic models under co...
This thesis is part of non parametric univariate regression. Assume that the regression function is ...
This article introduces a new nonparametric method for estimating a univariate regression function o...
This article explores some theoretical aspects of a recent nonparametric method for estima...
25 pages, 5 figuresInternational audienceIn the present paper, we propose and analyze a novel method...
Nous proposons une méthode d'inférence appelée «latent backfitting». Cette méthode est spécialement ...
This thesis will treat the subject of constrained statistical inference and will have its focus on i...
ing case antitonic regression. The corresponding umbrella term for both cases is monotonic regressio...
The present research work outlines the main ideas behind statistical regression by a 2-independent-v...
The character of nonparametric statistical methods is that they are constructed for very general sit...
Modelos de regressão não-linear têm se mostrado adequados para descrever curvas de crescimento de an...
This paper gives optimal algorithms for determining realvalued univariate unimodal regressions, that...
This paper gives algorithms for determining real-valued univariate unimodal regressions, that is, fo...
Suppose m(·) is a regression function which has a unique zero [theta]. The Robbins--Monro process X...
We study the isotonic regression estimator over a general countable pre-ordered set. We obtain the l...
<div><p>We present a new computational and statistical approach for fitting isotonic models under co...