Cette thèse étudie l'utilisation de certains invariants asymptotiques en géométrie conforme et géométrie CR.La première partie est consacrée à la géométrie conforme. Nous calculons les premiers termes du développement asymptotique de la fonction de Green des opérateurs GJMS au voisinage de la diagonale, pour un facteur conforme normal au sens de Lee et Parker. Nous montrons que le terme constant de ce développement est covariant sous un changement de facteur conforme normal. Nous le rattachons à un invariant à l'infini de type masse ADM d'une métrique non compacte obtenue par projection stéréographique.La deuxième partie est consacrée à la géométrie CR. Nous calculons les premiers termes du développement asymptotique de la fonction de Green...
The invariant theory for conformal hypersurfaces is studied by treating these as the confor...
International audienceLet (M, g) be an (n + 1)-dimensional asymptotically locally hyperbolic (ALH) m...
AbstractThis is the fourth in a series of papers where we prove a conjecture of Deser and Schwimmer ...
Cette thèse étudie l'utilisation de certains invariants asymptotiques en géométrie conforme et géomé...
After recalling some features (and the value of) the invariant « Ricci calculus » of pseudo‐Riemann...
Conformal geometry has occupied an important position in mathematics and physics since early last ce...
Abstract. Consider an asymptotically flat Riemannian manifold (M, g) of dimension n ≥ 3 with nonempt...
This book is an introduction to the theory of spatial quasiregular mappings intended for the uniniti...
Cauchy-Riemann geometry, CR for short, is the natural geometry of real pseudoconvex hypersurfaces of...
La géométrie de Cauchy-Riemann, CR en abrégé, est la géométrie naturelle des hypersurfaces réelles p...
In this dissertation, we prove a number of results regarding the conformal method of finding solutio...
We give an explicit description of the full asymptotic expansion of the Schwartz kernel of the compl...
AbstractIf P′ is a C∞ positive function on a compact riemannian manifold of dimension n ⩾ 3 and metr...
tions on a Riemannian manifold Mn with scalar curvature s, is a conformally invariant operator. In t...
These lectures will be an exposition of recent work on the relation between conformal invariants of ...
The invariant theory for conformal hypersurfaces is studied by treating these as the confor...
International audienceLet (M, g) be an (n + 1)-dimensional asymptotically locally hyperbolic (ALH) m...
AbstractThis is the fourth in a series of papers where we prove a conjecture of Deser and Schwimmer ...
Cette thèse étudie l'utilisation de certains invariants asymptotiques en géométrie conforme et géomé...
After recalling some features (and the value of) the invariant « Ricci calculus » of pseudo‐Riemann...
Conformal geometry has occupied an important position in mathematics and physics since early last ce...
Abstract. Consider an asymptotically flat Riemannian manifold (M, g) of dimension n ≥ 3 with nonempt...
This book is an introduction to the theory of spatial quasiregular mappings intended for the uniniti...
Cauchy-Riemann geometry, CR for short, is the natural geometry of real pseudoconvex hypersurfaces of...
La géométrie de Cauchy-Riemann, CR en abrégé, est la géométrie naturelle des hypersurfaces réelles p...
In this dissertation, we prove a number of results regarding the conformal method of finding solutio...
We give an explicit description of the full asymptotic expansion of the Schwartz kernel of the compl...
AbstractIf P′ is a C∞ positive function on a compact riemannian manifold of dimension n ⩾ 3 and metr...
tions on a Riemannian manifold Mn with scalar curvature s, is a conformally invariant operator. In t...
These lectures will be an exposition of recent work on the relation between conformal invariants of ...
The invariant theory for conformal hypersurfaces is studied by treating these as the confor...
International audienceLet (M, g) be an (n + 1)-dimensional asymptotically locally hyperbolic (ALH) m...
AbstractThis is the fourth in a series of papers where we prove a conjecture of Deser and Schwimmer ...