I investigate the importance of determining the exact dimensionality of a nonlinear system in time series prediction by comparing the effects of varying the embedding vector dimension of linear and nonlinear prediction algorithms. I use the logistic and Henon maps to demonstrate that when the embedding vector dimension of a prediction algorithm is less than the actual dimension of the underlying time series, then the prediction algorithm is unable to accurately capture the dynamics of the time series. On the other hand, when the embedding vector dimension is overestimated, then the prediction horizon collapses quickly, but systematically, with the predicted values filling a manifold bounded by the true dimensional time series attractor. I c...