In this paper, we introduce the concept of several types of groupoids related to semigroups, viz., twisted semigroups for which twisted versions of the associative law hold. Thus, if (X, *) is a groupoid and if phi : X-2 -�� X-2 is a function phi (a, b) = (u, v), then (X, *) is a left-twisted semigroup with respect to phi if for all a, b, c is an element of X, a * (b * c) = (u * v) * c. Other types are right-twisted, middle-twisted and their duals, a dual left-twisted semigroup obeying the rule (a * b) * c = u * (v * c) for all a, b, c is an element of X. Besides a number of examples and a discussion of homomorphisms, a class of groupoids of interest is the class of groupoids defined over a field (X,+, .) via a formula x * y = lambda x + mu...