Ice interaction with vertical faces of structures can result in regular vibrations given certain conditions such as temperature and speed of interaction. The mechanism that can provide this regular behaviour is studied. Fracture in general does not offer a solution in compressive failure. An approach based on viscoelastic theory, with softening resulting from microstructural change, is given. The pivotal observation was a layer of microstructurally modified ice adjacent to the structure or indentor, together with high local pressures transmitted into the layer. The microstructural changes include microfracturing and recrystallization. A series of triaxial tests was performed to determine the inputs into the viscoelastic theory. The theory r...