A two-dimensional axisymmetric model is developed to study the hydrogen desorption reaction and its subsequent discharge in a metal hydride canister. Experimental tests are performed on an in-house fabricated setup. An extensive study on the effects of the metal properties and boundary conditions on discharging performance is carried out through non-destructive testing (NDT). Results show that the desorption process is more effective if the activation energy for desorption (Ed) and the reaction enthalpy (ΔH) decrease, and when the desorption rate coefficient (Cd) and the external convection heat transfer coefficient when the bottle is being heated (h) increase. Furthermore, porosity (ε) can be useful for the design of hydrogen storage syste...